If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=8.41
We move all terms to the left:
x^2-(8.41)=0
We add all the numbers together, and all the variables
x^2-8.41=0
a = 1; b = 0; c = -8.41;
Δ = b2-4ac
Δ = 02-4·1·(-8.41)
Δ = 33.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{33.64}}{2*1}=\frac{0-\sqrt{33.64}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{33.64}}{2*1}=\frac{0+\sqrt{33.64}}{2} =\frac{\sqrt{}}{2} $
| 17+5r=-23 | | 7c+10=3c-14 | | 12=7p-4p | | (3x+30)=(x+90) | | 46+16t-4.9t^2=0 | | y*2+6y+9=0 | | 3w+25=7w-14 | | -3(x-9)-(x+2)=-8x+9 | | 23+36x=24+36 | | -4(c-26)=-200 | | x*60=180 | | x2=72+6x | | 4(3/2x-1/2=-15 | | a³+a=-10 | | -2=x/2+6 | | 6(^200)=x(^100) | | G=18-5b | | Y^3-15y^2+75=y-125 | | (2x+1)/3=4/5 | | 16^(3x)=2 | | D=6e-12 | | 2x+1/3=4/5 | | 9w^+14w=1w(9w)+1w(14) | | 5(^6x)=125 | | 5x+(3x+30)=180 | | 10c+25c^=5c(2c)+5C(5) | | 2(b-6)=6(b-6) | | 1/2*y=-8 | | 2(xˆ+4.5x+5.0625)=0 | | -29.5=4.5(6h-8) | | u^2+2u+12=0 | | B=4w+2 |